HAYRİYE KIMÇAK LİSESİ
matematik lise
matematik

Polinomlar

 

POLİNOMLAR



A. TANIM

n bir doğal sayı ve a0, a1, a2, ... , an – 1, an birer gerçel sayı olmak üzere,

P(x) = a0 + a1x + a2x2 + ... + an – 1xn – 1+anxn

biçimindeki ifadelere x değişkenine bağlı, gerçel (reel) katsayılı n. dereceden polinom (çok terimli) denir
.


Bir fonksiyonun polinom olup olmadığı nasıl anlaşılır bulunur.Polinom nasıl anlaşılır nerden bilinir ?

Olay şu bilinmeyenin yani x lerin üstlerindeki sayılar doğal sayı olacak negatif yada kesirli olmayacak.

x Karekök içinde ise olmaz kuvvet şeklinde yazarsak kesirli olur.

x paydada yanlız ise yukarı çıkarınca kuvvet negatif olur negatif kuvvet ters çevirir özelliği.

 


  kuvvetler 0 dan başlıyor.

B. POLİNOMLARDA TEMEL KAVRAMLAR NEDİR

 


P(x) = a0 + a1x + a2x2 + ... + an – 1xn – 1+anxn

olmak üzere,

Ü a0, a1, a2, ... , an–1, an in her birine polinomun terimlerinin katsayıları denir.Yani bilinmeyenin önündeki sayı
.

Ü a0, a1x, a2x2, ... , an–1xn – 1, anxn in her birine polinomun terimleri denir
. (- ve + ile ayrılan herbir grup)

Ü Polinomun terimlerinden biri olan a2x2 teriminde x in kuvveti olan 2 ye bu terimin derecesi denir. (kuvvet en büyük üslü sayı
.)

 



Ü Polinomu oluşturan terimler içerisinde derecesi en büyük olan terimin katsayısına polinomun baş katsayısı, bu terimin derecesine de polinomun derecesi denir ve

der [p(x)] ile gösterilir.

Ü Değişkene bağlı olmayan terime polinomun sabit terimi denir.

Ü a0 = a1 = a2 = ... = an = an–1 = 0 ise, P(x) polinomuna sıfır polinomu denir. Sıfır polinomunun derecesi tanımsızdır.

Ü a0 ¹ 0 ve a1 = a2 = a3 = ... an – 1 = an = 0 ise, P(x) polinomuna sabit polinom denir. Sabit polinomunun derecesi sıfırdır.


Her polinom bir fonksiyondur. Fakat her fonksiyon polinom olmayabilir.

Buna göre, fonksiyonlarda yapılan işlemler polinomlarda da yapılır
.





C. ÇOK DEĞİŞKENLİ POLİNOMLAR NEDİR

P(x, y) = 3xy2 – 2x2y – x + 1

biçimindeki ifadelere iki değişkenli polinomlar denir. Bu polinomda aynı terimdeki değişkenlerin üsleri toplamından en büyük olanına polinomun derecesi denir.



D. POLİNOMLARDA EŞİTLİK NEDİR

Aynı dereceli en az iki polinomun eşit dereceli terimlerinin katsayıları birbirine eşit ise bu polinomlara eşit polinomlar denir.



Ü P(x) polinomunun katsayıları toplamı P(1) dir.

Ü P(x) polinomunda sabit terim P(0) dır.




Herhangi bir polinomda; kat sayılar toplamı bulunurken o polinomda değişkenler yerine 1 yazılır. Sabit terim bulunurken o polinomda değişkenler yerine 0 (sıfır) yazılır.

P(ax + b) polinomunun; kat sayıları toplamı

P(a + b) ve sabit terimi P(b) dir.





Ü P(x) polinomunun;

Çift dereceli terimlerinin kat sayıları toplamı:'dır.


Tek dereceli terimlerinin kat sayıları toplamı:'dır
.


E. POLİNOMLARDA İŞLEMLER NEDİR NASIL YAPILIR

1. Toplama ve Çıkarma

P(x) = anxn + an – 1xn – 1 + an – 2xn – 2 + ...

Q(x) = bnxn + bn – 1xn – 1 + bn – 2xn – 2 + ...

olmak üzere,



P(x) + Q(x) = (an + bn)xn + (an – 1 + bn–1)xn – 1 + ...

P(x) – Q(x) = (an – bn)xn + (an – 1 – bn–1)xn – 1 + ...

olur.



2. Çarpma

İki polinomun çarpımı, birisinin her bir teriminin diğerinin her bir terimi ile ayrı ayrı çarpımlarından elde edilen terimlerin toplamına eşittir.



3. Bölme (bu biraz zordur(

der [P(x)] ³ der [Q(x)] ve Q(x) ¹ 0 olmak üzere,


P(x) : Bölünen polinom

Q(x) : Bölen polinom

B(x) : Bölüm polinom

K(x) : Kalan polinomdur.



Ü P(x) = Q(x) . B(x) + K(x)

Ü der [K(x)] < der [Q(x)]

Ü K(x) = 0 ise, P(x) polinomu Q(x) polinomuna tam bölünür.

Ü der [P(x)] = der [Q(x)] + der [B(x)]



Polinomlarda bölme işlemi, sayılarda bölme işlemine benzer biçimde yapılır.

Bunun için;

1) Bölünen ve bölen polinomlar x in azalan kuvvetlerine göre sıralanır.

2) Bölünen polinom soldan ilk terimi, bölen polinomun ilk terimine bölünür.

3) Bulunan bu bölüm, bölen polinomun bütün terimleri ile çarpılarak, aynı dereceli terimler alt alta gelecek biçimde bölünen polinomun altına yazılır.

4) Bulunan sonuç, bölünen polinomdan çıkarılır. Fark polinomuna da aynı işlem uygulanır.

5) Yukarıdaki işlemlere, kalan polinomun derecesi bölen polinomun derecesinden küçük oluncaya kadar devam edilir.



F. KALAN POLİNOMUN BULUNMASI

Kalan polinomu, klasik bölme işlemiyle ya da aşağıdaki 3 yöntemden biri ile bulabiliriz.



1. Bölen Birinci Dereceden İse

Bir polinomun ax + b ile bölümünden kalanı bulmak için, polinomda değişken yerine yazılır.
P(x) in x – b ile bölümünden kalan P(b) dir.

• P(mx + n) nin ax + b ile bölümünden kalan



. Bölen Çarpanlara Ayrılıyorsa

Bölen çarpanlara ayrılıyorsa, her çarpan sıfıra eşitlenir. Bulunan kökler polinomda yazılarak kalan bulunur.

P(x) polinomunun a(x – b) . (x – c) ye bölümünden kalan mx + n ve bölüm polinom Q(x) ise,

P(x) = a(x – b) . (x – c) . Q(x) + mx + n olur.

P(b) = mb + n ... (1)

P(c) = mc + n ... (2)

(1) eşitliği ile (2) eşitliğinin ortak çözümünden m ve n bulunur.


Bölen polinomun derecesi n ise kalan polinomun derecesi en fazla (n – 1) dir.





3. Bölen Çarpanlarına Ayrılamıyorsa

Bölen çarpanlarına ayrılamıyorsa aşağıdaki 2 yöntem sırasıyla uygulanarak kalan polinom bulunur.

1) Bölen polinom sıfıra eşitlenerek en büyük dereceli değişkenin eşiti bulunur.

2) Bulunan ifade bölünen polinomda yazılır.

• P(x) polinomunun ax2 + bx + c ile bölümünden kalanı bulmak için P(x) polinomunda x2 yerine yazılır.



4. P(x) Polinomu (ax + b)n İle Tam Bölünüyorsa, (n Î N+, n > 1)


......................

......................

......................



P'(x) : P(x) polinomunun 1. türevidir.)




P(x) = axn + bxm + d ise,

Pı(x) = a . nxn–1 + b . mxm–1 + 0

Pıı(x) = a . n . (n – 1)xn–2 + b . m(m –1).xm–2 dir.






P(x) polinomunun (x – a) ile bölümünden elde edilen bölüm Q(x) ve kalan k1, Q(x) polinomunun (x – b) ile bölümünden kalan k2 ise,

P(x) in (x – a) (x – b) ile bölümünden kalan

K(x) = (x – a) k2 + k1 olur
.





G. BASİT KESİRLERE AYIRMA

a, b, c, d, e, f A, B birer reel (gerçel) sayı olmak üzere,



eşitliğinde A yı bulmak için, A nın paydasının kökü bulunur.


eşitliğinde A yı bulmak için, A nın paydasının kökü bulunur.


Bulunan bu değer eşitliğin sol yanında A nın paydası atılarak elde edilen de yazılır.



Aynı işlemler B için de yapılır. Buna göre,


. DERECE İLE İLGİLİ İŞLEMLER

m > n olmak üzere,

der[P(x)] = m

der[Q(x)] = n olsun.

Buna göre,

1) der[P(x) ± Q(x)] = m dir.

2) der[P(x) . Q(x)] = m + n dir.

3) P(x) in Q(x) ile bölümünden elde edilen bölüm polinomu B(x) ise, der[B(x)] = m – n dir.

4) k Î N+ için der[Pk(x)] = k . m dir.

5) der[P(kx)] = m, k ¹ 0 dır

 

B. POLİNOMLARDA İŞLEMLER

1. Toplama İşlemi

İki polinom toplanırken; dereceleri aynı olan terimlerin kat sayıları kendi aralarında toplanır, sonuç o terimin kat sayısı olarak yazılır.

 

2. Çıkarma İşlemi

      P(x) – Q(x) = P(x) + [–Q(x)]

olduğu için, P(x) polinomundan Q(x) polinomunu çıkarmak, P(x) ile
–Q(x) i toplamaktır. Bunun için çıkarma işlemini, çıkarılacak polinomun işaretini değiştirip toplama yapmak biçiminde ele alabiliriz.

 

3. Çarpma İşlemi

İki polinomun çarpımı; polinomlardan birinin her teriminin diğer polinomun her bir terimi ile ayrı ayrı çarpımlarından elde edilen terimler toplamınarak yapılır.

 

4. Bölme İşleminin Yapılışı

Polinomlarda bölme işlemi, sayılarda bölme işlemine benzer şekilde yapılır. Bunun için sırasıyla aşağıdaki işlemler yapılır:

1) Bölünen ve bölen polinomlar x değişkeninin azalan kuvvetlerine göre sıralanır.

2) Bölünen polinomun soldan ilk terimi, bölen polinomun soldan ilk terimine bölünür. Çıkan sonuç, bölümün ilk terimi olarak yazılır.

3) Bulunan bu bölüm, bölen polinomun bütün terimleri ile çarpılarak, aynı dereceli terimler alt alta gelecek şekilde bölünen polinomun altına yazılır.

4) Bölünenin altına yazılan çarpım polinomu, bölünen polinomdan çıkarılır.

5) Yukarıdaki işlemlere, kalan polinomun derecesi, bölen polinomun derecesinden küçük oluncaya kadar devam edilir.

 

Tanım

m > n olmak üzere,

der[P(x)] = m ve der[Q(x)] = n olsun.

P(x) in Q(x) ile bölümünden elde edilen bölüm polinomu B(x) olsun.

Buna göre,

 der[P(x) + Q(x)] = m,

 der[P(x) – Q(x)] = m,

 der[P(x) × Q(x)] = m + n,

 der[B(x)] = m – n,

 der[[P(x)]k] = k × der[P(x)] = k × m,

 der[[P(xk)]] = k × der[P(x)] = k × m dir.

 

 

MATEMATİK LİSE 1 Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol